Sonntag, Mai 22, 2011

Ekelhafte WGs und verwesende Kleintiere

Sorry - this one is in German ... but quite hilarious :o)

Der frag-mutti.de Newletter ist immer wieder für Überraschungen gut. Da fragt man sich ernsthaft wie manche Leute leben und ob da ein Besuch des Gesundheitsamts oder von dieser netten Firma nicht besser wäre.

Wie auch immer - hier die beiden Kleinode aus der letzten Ausgabe:

02 // Backofenreiniger fuer Faule - Tueren (und alle anderen Dinge) werden
wie neu
------------------------------
---------------------------------------------
Diesen Tipp direkt anschauen unter:
http://www.frag-mutti.de/show.php?category_id=2&article_id=25406&nid=1021

19.05.2011, 2615 mal gelesen

Wer ein bisschen faul ist oder gar, wie ich, bekennende Haushaltsschlampe,
hat in regelmaessigen Abstaenden die Erkenntnis - es muesste mal geputzt
werden! Nur wie? Stundenlang scheuern, buecken, rubbeln, kratzen...
vielleicht noch mit so tollen Allzweckmitteln wie das staendig beworbene
grellpinke Superzeug? Das stinkt nach Essig und Chlor wie die Hoelle, kann
man sich ja gar nicht entspannen. In einem 7-Personen-Haushalt Hoelle pur.

Die Loesung - Backofenreinigerschaum. Auf Vorrat kaufen, ist oft im Angebot
- und einfach alles muehelos sauberkriegen.

Heute schlenderte ich ueber meinen Flur und wollte eigtl. eine Pinnwand an
meine Zimmertuer antackern. Aber bei naeherem Hinsehen entdeckte ich einen
fiesen Dreckbelag (verkleckerter Cappu, Hundepfotenspuren, viel zu viel
Nikotin und ueberhaupt, recht interessant).

Backofenreinigerschaumdose (is uebrigens auch n tolles Wort fuer Scrabble &
Co!) geschnappt und die Tuer (Holz, lackiert, alt) eingesprueht.

Fluffig eine rauchen gehen (natuerlich nicht direkt neben der Tuer, ehm),
noch ein bisschen zocken oder unter die Dusche huepfen. Halt alles was man
so macht um sich aufs Putzen einzustimmen ;). Nebenbei mal nen pruefenden
Blick auf die Tuer werfen und sich freuen zu sehen, wie der ehemals weisse
Schaum ganz von allein und ohne dass man sich anstrengen muss, den Dreck
aufsaugt *g*.

Nach rund einer Stunde spannender Beschaeftigung einen feuchten Lappen
geschnappt und sachte ueber die Tuer gerieben - sieht aus wie neu!

Ich mach damit uebrigens alles sauber, von Fenstern ueber klebrige oder
verfettete Kuechenfliesen (vor allem die hinter der Spuele), Wasserhaehne (ja
genau, die Kringel unten wo der Hahn ins Becken uebergeht), Farb- und
Oelspuren von der Fahrradreparatur im Flur, die elenden immer wieder gern
vergessenen Uebergaenge vom Klobecken in den Boden/ die Schrauben dort
(schrubbt man sich gern mal die Finger blutig dran), selbst ueber den
Sommer eingebluetenstaubte Gartenmoebel. Wenn man einen Reiniger kauft, der
lebensmittelvertraeglich ist, kann man damit super auch versiffte
Brotschneidemaschinen, Mikrowellen oder elektrische Dosenoeffner (ja ihr
kennt das, ich weiss *g*) sauber kriegen.

Have Fun!
Ich geh jetzt meine Pinnwand antackern ;)

Kategorie: Putztipps, Putzmittel

Kommentare: 26
Unter folgendem Link kannst du den Tipp und die Meinungen der anderen
Besucher lesen und selbst mitdiskutieren:

http://www.frag-mutti.de/show.php?category_id=2&article_id=25406&nid=1021

----

04 // Fiese Gerueche (tote Maeuse/Tauben) mit Weihrauch beseitigen
------------------------------
---------------------------------------------
Diesen Tipp direkt anschauen unter:
http://www.frag-mutti.de/show.php?category_id=2&article_id=25407&nid=1021

19.05.2011, 1505 mal gelesen

Klingt erstmal komisch, ne?

Wir leben auf einem alten Hof und haben dementsprechend immer mit Maeusen
zu tun, auch mal mit toten. Irgendwo hingelaufen (gern mal hinter
Holzverkleidungen), das Zeitliche gesegnet und nicht auffindbar - aber am
Gestank zu erkennen -.-

Auch schoen sind tote Tauben im Kamin - hat man lange was von.

Wer da nicht so drauf steht, aber mit Duftspray, Dufttuechern und Lueften
nicht weiterkommt (Verwesungsgeruch ist enorm resistent gegen Lueften), dem
hilft vielleicht mein Tipp. Ab ins naechstbeste Teehaus, Mittelaltermarkt
oder im Internet mal schauen und sich Weihrauchharz zum Raeuchern besorgen.
Kostet nicht viel, sind kleine gelblich-braune Kuegelchen - braucht man auch
nicht viel von.

Den ganzen Faxenkram mit Raeucherdoeschen und Raeucherkohle und Co. kann man
sich schenken (wer es eh hat, benutzt es halt) - eine Duftlampe (unten
Teelicht, oben drauf Schale mit Wasser und Oel) reicht voellig.

Die Wasserschale durch irgendwas aus Metall ersetzen, kann ein passendes
Metalltellerchen sein oder einfach eine normale alte Untertasse mit 6-fach
gefalteter Alufolie belegt. Teelicht drunter, 4-5 Kuegelchen vom Weihrauch
drauf legen und ab damit ins betreffende Zimmer, so nah wie moeglich an die
vermutete Leichenstelle.

Brandschutz setze ich voraus - die Kuegelchen werden sehr heiss!

Benutzt man eine (Metall)Schale/Teller ohne Alufolie, kann man die nie
wieder fuer was anderes benutzen, denn das Harz brennt sich ein.

Das Ganze solange vor sich hin raeuchern lassen, bis es verbraucht ist -
und der Gestank ist verschwunden und kommt nicht wieder.

Warum es funktioniert, weiss ich nicht, aber es klappt. Obwohl das Vieh
weiter vor sich hinmodert, stinkt's nicht wieder. Oder nur sehr minimal,
ich schiesse dann einfach ne 2. Ladung Rauch hinterher und spaetestens dann
ist Ruhe.

Ja, der Geruch ist gewoehnungsbeduerftig fuer viele - aber Verwesungsgeruch
ist deutlich schlimmer.

Kategorie: Putztipps, Gerueche

Kommentare: 8
Unter folgendem Link kannst du den Tipp und die Meinungen der anderen
Besucher lesen und selbst mitdiskutieren:

http://www.frag-mutti.de/show.php?category_id=2&article_id=25407&nid=1021

Dienstag, Mai 03, 2011

The Terrorist Won

I just passed by a spot where a man was shot in the head and died on the scene about the same time Osama Bin Laden got killed. I probably past the line of fire and there was still blood on the street. A man died a few hundred metres from home - this is extremely disturbing.

This man had blood on his hand because he stabbed a woman earlier that night and he also tried to stab the police officer who finally shot him. It is a clear cut case but nobody cheers that this guy is dead. In fact everyone is quite contrite. This is not the way we deal with humans even if they are violent criminals or our worst enemies.

Some twothousand years ago somebody introduced the concept of grace of charity. I am not religious - not at all - but abandoning the eye for an eye concept is the very base of our culture and civilisation. That doesn't mean we can't defend ourselves, we only have to make sure that we follow the values of human dignity and rights we are defending.

Yesterday all of that went down the drain. Not in St. Kilda's Grey Street, not in Abbottabad in Pakistan and not in the Situation Room where a Commander in Chief gave an order. It happened right in front of the White House and on the Time Square where a crowd cheered over the death of a man. Like the man in St. Kilda Osama Bin Laden had blood on his hands and it is good none of them can harm anyone anymore but this is no reason to cheer and party. Are the pictures of the 31 March 2004 already forgotten where a mob killed four Americans and hang their charred corpses onto a bridge in Fallujah? And is the memory of American soldiers dragged through the streets by a crowd of local civilians after the Battle of Mogadishu on the morning of the 4th October 1993 also erased? These were outrageous pictures where we thought nobody in the western world is capable of. I thought we abandoned the dark ages with the end of World War II for good.We as a society learned from our past and from the errors and mistakes of our fathers and grand-fathers.
However I was wrong. Killing someone without a trial and feeling good about it? Doesn't that kick us off the moral high-ground we had over the terrorist? How is that any different from Mogadishu or Fallujah?


In was a good day for counter-terrorism. It might have been a great day for the USA but it was one of the worst day for the western civilisation.

We lost. They won.

Dienstag, März 15, 2011

Erklärung der Wasserstoff-Explosionen in den Blöcken 1 und 3

Dies ist eine Übersetzung eines Blogposts des MIT: "Explanation of Hydrogen Explosions at Units 1 and 3" vom 15. März 2011. Das Original kann auf mitnse.com abgerufen werden.Anmerkungen und Ergänzungen von mir sind (grün, kursiv und mit Klammern gekennzeichnet)
Die Explosionen die den Blöcken 1 und 3 aufgetreten sind hatte jeweils eine ähnliche Ursache. Bei einem Störfall in einem Kernkraftwerk wie z.B. ein Kühlmittelverlust-Unfall oder wenn die Stromversorgung unterbrochen wird, wird normalerweise zunächst der Druck im Reaktor reduziert. Dies geschieht durch die Öffnung der Überdruckventile am Reaktorbehälter. Das Wasser-Dampf-Gemisch in die sogenannte
Kondensationskammer  geleitet, welche bei diesem Reaktor die Form eines Torus hat (das ist der Fachausdruck für die Form eines Donuts). Durch das Einblasen des heißen Dampfes in die Kondensationskammer, kondensiert also verflüssigt sich ein Teil des Dampfes, was hilft den Druck im Containment niedrig zu halten.
Der Druck im Reaktor wird durch das Ablassen des Wasser-Dampf-Gemisch verringert. Es ist dann viel einfacher Wasser in den Behälter zu pumpen, wenn es einen geringerer Druck herrscht, wodurch es leichter ist den Brennstoff zu kühlen. Dieses Verfahren war
nach dem Erdbeben in vollem Gange. Leider entstand, wegen der enormen Stärke des Bebens, eine ebenso großer Tsunami. Dieser Tsunami  setzte die lokalen Diesel-Generatoren sowie die elektrische Schaltanlage außer Gefacht. Ohne Strom für Pumpen, um die Wärme zu reduzieren, begann die Temperatur des Wassers im Reaktor zu steigen.
Mit der steigenden Wassertemperatur im Kern, begann ein Teil des Wassers zu verdampfen und schließlich lagen einige der Brennstäbe im Trockenen (ragten also teilweise über den Wasserstand hinaus). Die äußerste Schicht der Brennstäbe besteht aus einer Zirkonium-Legierung. Wenn Zirkonium heiß genug und Sauerstoff vorhanden ist (Der Dampf liefert den Sauerstoff), dann kann es eine Reaktion geben, die Wasserstoffgas erzeugt. Wasserstoff ist bei Konzentrationen von über 4% leicht entzündlich wenn er mit Sauerstoff gemischt wird, aber jedoch nicht wenn auch übermäßiger Dampf vorhanden ist.
Im Laufe der Zeit stieg der Druck im Containment zu einem viel höheren Niveau als üblich an. Das Containment ist die größte Barriere für die Freisetzung von radioaktiven Elementen in die Umwelt und sollte um keinen Preis versagen dürfen. Die geplante Reaktion auf ein Ereignis wie dieses ist, einigen Dampf in die Atmosphäre entweichen zu lassen, nur um den Druck unter Kontrolle zu halten.
 

Was als nächstes geschah ist nicht überprüft, jedoch ist das Folgende wahrscheinlich die allgemeine Erklärung für die Explosion. Es wurde beschlossen den Dampf durch einige Rohrleitungen in den  Raum oberhalb und außerhalb des Sicherheitsbehälters aber im Inneren des Reaktorgebäudes zu führen. An dieser Stelle wurden der Dampf und das Wasserstoff-Gas mit der Luft in den oberen Teil des Reaktorsgebäude gemischt. Das war noch keine explosive Mischung, da große Mengen an Wasserdampf mit dem Wasserstoff und dem Sauerstoff (aus der Luft) gemischt waren. Allerdings ist die Spitze des Gebäudes durch das Wetter draußen deutlich kälter als im Sicherheitsbehälter. Diese Situation würde dazu führen, dass ein Teil des Dampfes zu Wasser kondensiert wodurch die Konzentration des Wasserstoff-Luft-Gemischs ansteigt. Das ging wahrscheinlich für einen längeren Zeitraum gut bis irgendwann eine Zündquelle (z. B. ein Funke von elektrischen Geräten) die Explosion auslöste, die in den Blöcken 1 und 3 zu sehen war gesetzt. Der obere Teil des Reaktorgebäudes wurde schwer beschädigt, jedoch zeigte das Containment keine Anzeichen von Schäden.
Gleich nach den Explosionen wurden Spitzen in der Strahlung gemessen, da es einige radioaktive Stoffe in dem Dampf
gab. Als die Ummantelung bestehend aus der Zirkoniumlegierung reagierte und Wasserstoff erzeugte, wurden einige Spaltprodukte freigesetzt. Die überwiegende Mehrheit der radioaktiven Stoffe im Brennstoff wird in dem Brennstoff bleiben. Allerdings sind einige der Spaltprodukte Edelgase (Xenon, Krypton und Xe, Kr) und diese verlassen sofort die Brennstäbe, wenn die Integrität der Ummantelung beeinträchtigt wird. Glücklicherweise sind Xe und Kr keine ernsthafte radiologische Gefahr, weil sie chemisch inert sind (also sehr sehr ungern mit anderen Stoffen reagieren) und sie werden daher nicht mit Menschen, (Tieren) oder Pflanzen reagieren. Darüber hinaus können kleine Mengen von Jod (I) und Cäsium (Cs) mit dem Dampf mitgerissen werden. Wenn der Dampf abgelassen das Reaktorgebäude wurde, würde die Xe und Kr sowie einige kleine Mengen von I und Cs gefolgt. Somit wurden diese Radionuklide ebenfalls freigesetzt, als das Dach des Reaktorgebäudes beschädigt wurde. Dies ist der Grund warum eine plötzlicher Anstieg der Strahlung zu sehen war. Diese erhöhte Strahlung ist wieder schnell gesunken. Das passierte, da es keine Schäden an der Eindämmung gab, die die Menge der freigesetzten Radionuklide erhöht hätte und die Radionuklide, die bei der Explosion freigesetzt wurden, sich schnell verteilten oder zerfielen.

Explosion in Block 2

Aus aktuellen Informationen geht hervorgeht, dass das Containment von Block 2 möglicherweise beschädigt ist. Die Druckentlastung ist durch ein fehlerhaftest Ablassventil kompliziert worden. Das wiederum hat das Einpumpen von Meerwasser und das ablassen des Dampfs und des Wasserstoffs kompliziert. Es wurde berichtet, dass die Brennstäbe zweimal vollständig ausgesetzt waren. Weitere Details folgen.

Feuer in Block 4


Es wurde über ein Feuer in Block  4 berichtet, der schon vor dem Erdbeben und dem Tsunami für eine geplante Wartung heruntergefahren worden war. Aktuelle Berichte zeigen, dass das Feuer gelöscht wurde. Weitere Details folgen.

(Update 16/03/2011 22:25 GMT : Block 4 brennt wieder - ich konnte keine gesicherten Informationen dazu finden was dort brennt)

Some Background on Josef Oehmen's Blogpost

Josef ist genauso wie ich kein Kerntechniker, sondern eigentlich Supply Chain Manager. Wir haben zusammen an der TU München Maschinenwesen studiert und daher ein fundiertes Grundwissen, wenn es um Technik geht. Vor einer Stunde hat Josef ein bisschen Hintergrundinformationen über sich und die Enstehung seines Artikels auf facebook gepostet, die ich Euch nicht vorenthalten möchte:




And here the background piece I just put online. I think I am now done with it and have to wait and see if I emerge as the visionary leader or - stupid.

Background to the original post here on Jason’s Blog and the current version at mitnse.com by Josef Oehmen, who really was the author

I am a mechanical engineer and research scientist at MIT. I am not a nuclear engineer or scientist, or affiliated with Nuclear Science and Engineering at MIT, so please feel free to question my competence. The text is based on an email that I send to family and friends in Japan the night of March 12. It was posted on this blog by my cousin Jason, went viral and has been equally popular with people who hate it and love it ever since. It aimed at explaining the events surrounding the Fukushima Daiichi-1 reactor. Great lengths of the text are dedicated to explaining how the reactor works, what the different types of radiation sources are, and what safety features have been implemented. I then continue to describe how these safety features were operated to secure the reactor. To the extent that I could, I have verified this information with experts in the field, while the responsibility for any errors remains with me. The version on mitnse.com is the most accurate, and as you can tell in many parts different to the version that appeared here on Jason’s blog. This post is not keeping track of or explaining events after Mar 12. Events kept developing, and many people keep sharing their discovery with me that one is always smarter after the fact.

In my email, preserved through various copies of Jason’s first post around the internet, I expressed my strong believe that my family and friends are safe. This keeps both annoying and reassuring a great many people. Whether my unwavering trust in my fellow engineers of 50 years ago who designed and build the plant, or my complete trust and admiration of my fellow engineers who are currently operating the reactors makes me a level-headed guy or right-out stupid is also hotly debated. Most people hope for the former, but some have decided for the latter.

As far as I am concerned, I was just doing my job. Fixing things. In this case, a complete lack of understandable context information that would have allowed my family and friends in Japan to make an informed assessment of their situation.


Montag, März 14, 2011

Warum ich wegen der japanischen Kernkraftwerke nicht besorgt bin

Dies ist eine Übersetzung eines englischen Blogposts: "Why I am not worried about Japans nuclear Reactors"
Der Originaltext stammt von Dr. Josef Oehmen - ein ehemaliger Kommilitone von mir. Josef arbeitet als "Research Scientist" am MIT in Bosten und sein Vater hat umfassende Erfahrung in Deutschlands Atomindustrie.Dieser Text wurde für einen Freund der Familie von Josef geschrieben, der in Japan lebt.

Ich selber bin zwar Ingenieur aber kein Nukleartechniker, weshalb einige Begriffe falsch übersetzt sein könnten. Dieser Artikel ist eine 1:1 Übersetzung und geht daher nicht auf aktuellere Ereignisse ein, die nach der Veröffentlichung des Originalartikels stattfanden (nach der ersten Wasserstoffexplosion und der Flutung des Reaktorblocks 1).


Cheers
Philipp





Ich schreibe Dir diesen Text (12. März 2011), um Dich etwas in Hinblick auf die Situation in Japan zu beruhigen. Ich befasse mich deshalb mit der Sicherheit der Kernreaktoren in Japan. Zunächst einmal ist die Situation ernst, aber unter Kontrolle. Und dieser Text ist lang! Aber du wirst nach der Lektüre mehr Wissen über Kernkraftwerke haben als alle Journalisten auf diesem Planeten zusammen.

Es gab und wird * keine * erhebliche Freisetzung von Radioaktivität geben.

Mit "erheblich" meine ich , ein Niveau höher als die Strahlung, der man ausgesetzt ist wenn man - sagen wir - einen Langstreckenflug absolviert oder ein Glas Bier trinkt , das aus eine Gebieten mit einer hohen natürlichen Strahlenbelastung kommt.

Ich lese seit dem Erdbeben jede Pressemitteilung über den Vorfall . Es gab nicht einen einzigen (!) Bericht, der präzise und frei von Fehlern (und ein Teil dieses Problems ist auch eine Schwäche in der japanischen Krisenkommunikation) war. Mit "nicht frei von Fehlern" meine ich nicht den tendenziösen Anti-Atom-Journalismus - das ist dieser Tage schon normal. Mit "nicht frei von Fehlern" meine ich eklatante Fehler in Bezug auf Physik und Naturgesetze sowie grobe Fehlinterpretation von Fakten, wegen eines offensichtlichen Mangels an fundamentalem und grundlegendem Verständnis über die Art und Weise wie Atomreaktoren gebaut und betrieben werden. Ich habe einen 3-seitigen Bericht auf CNN gelesen, in dem jeder einzelne Absatz Fehler enthielt.

Wir müssen einige Grundlagen abdecken, bevor wir uns das anschauen, was passiert ist.

Der Aufbau der Fukushima Kernkraftwerke

Die Kraftwerke in Fukushima sind sogenannte Siedewasserreaktoren oder kurz SWR. Siedewasserreaktoren sind ähnlich wie ein Schnellkochtopf. Der nukleare Brennstoff heizt Wasser, das Wasser kocht und erzeugt Dampf, welcher dann Turbinen antreibt, die Strom erzeugen. Der Dampf wird dann abgekühlt und kondensiert wieder zu Wasser und das Wasser wird zurück zu den Brennelementen geleitet, um von dem Brennstoff erwärmt zu werden. Der Schnellkochtopf arbeitet bei etwa 250 °C

Der Kernbrennstoff ist Uranoxid. Uranoxid ist eine Keramik mit einem sehr hohen Schmelzpunkt von etwa 3000 °C. Der Brennstoff wird in Pellets hergestellt (denk einfach an kleine Zylinder in der Größe eines Legosteins). Diese Stücke werden dann in eine lange Röhre von Zirkalloy mit einem Schmelzpunkt von 2200 °C getan und dicht verschlossen. Dieses Ding wird Brennstab genannt. Diese Brennstäbe werden dann in größeren Paketen zusammengefasst und eine Reihe dieser Pakete wird im Reaktor montiert. Alle diese Pakete zusammen werden als "der Kern" bezeichnet.

Das Zirkalloy Gehäuse ist das erste Containment [Erklärung auf Wikipedia: http://de.wikipedia.org/wiki/Containment_(Nukleartechnik) Anm.d.Ü.] Es trennt die radioaktiven Brennelemente vom Rest der Welt.

Der Kern wird dann im "Druckbehälter" platziert. Das ist der Schnellkochtopf, über den wir vorher gesprochen haben. Der Druckbehälter ist das zweite Containment. Dies ist ein robuster Topf, der entworfen wurde, um den Kern bei Temperaturen von mehreren hundert °C sicher zu halten. Das deckt die Szenarien ab, in denen die Kühlung irgendwann wiederhergestellt werden kann.

Die gesamte "Hardware" des Kernreaktors - der Druckbehälter und alle Rohrleitungen, Pumpen, Kühlmitteltanks (Wasser), werden dann vom dritten Containment eingehüllt. Das dritte Containment ist eine hermetisch (luftdicht) verschlossene, sehr dicke Blase aus dem stärksten Stahlbeton. Das dritte Containment ist für einen einzigen Zweck konzipiert, gebaut und getestet: Um eine komplette Kernschmelze auf unbestimmte Zeit zu versiegeln. Zu diesem Zweck ist eine große und dicke Betonwanne unter dem Druckbehälter (dem zweiten Containment) - alles innerhalb des dritten Containments. Dies ist der so genannte "Core Catcher". Wenn der Kern schmilzt und das Druckgefäß platzt (und schließlich schmilzt), fängt er den geschmolzenen Brennstoff und alles andere. Es wird typischerweise so gebaut, dass der Kernbrennstoff sich verteilen und abkühlen kann.

Diese dritte Containment wird dann durch das Reaktorgebäude umgeben. Das Reaktorgebäude ist eine äußere Hülle, deren Aufgabe ist, das Wetter fernzuhalten, aber nichts drinnen (dies ist der Teil, der bei der Explosion beschädigt wurde, aber dazu später mehr).

Grundlagen der Kernreaktion

Der Uran Brennstoff erzeugt Wärme durch Kernspaltung. Große Uranatome werden in kleinere Atome gespalten. Das erzeugt Wärme plus Neutronen (eines der Teilchen, die ein Atom bilden). Wenn das Neutron ein anderes Uranatom trifft, und dann spaltet, erzeugt es mehr Neutronen und so weiter. Das wird als nukleare Kettenreaktion bezeichnet.

Einfach viele Brennstäbe nebeneinander zu packen, würde schnell zu einer Überhitzung führen und nach ca. 45 Minuten die Brennstäbe schmelzen. An dieser Stelle lohnt es sich zu erwähnen, dass der Kernbrennstoff in einem Reaktor * niemals * eine nukleare Explosion in der Art der einer Atombombe verursachen kann. Der Bau einer Atombombe ist tatsächlich recht schwierig (frag mal den Iran). In Tschernobyl wurde die Explosion durch einen übermäßigen Druckaufbau, eine Knallgasexplosion und den Bruch aller Containments verursacht, was das geschmolzene Kernmaterial in die Umwelt geschleudert hat (eine "schmutzige Bombe"). Warum das nicht Japan geschehen ist und nicht geschehen wird, steht weiter unten.

Um die nukleare Kettenreaktion zu steuern, verwenden die Bediener des Reaktors sogenannte "Steuerstäbe". Die Steuerstäbe absorbieren die Neutronen und beenden sofort die Kettenreaktion. Ein Kernreaktor ist so gebaut, dass im normalem Betrieb, alle Steuerstäbe herausgenommen sind. Das Kühlmittel Wasser nimmt dann die Wärme auf (und wandelt es in Dampf und Strom) mit der gleichen Geschwindigkeit wie der Kern diese produziert. Und Du hast eine Menge Spielraum um den normalen Betriebspunkt von etwa 250 °C.

Die Herausforderung besteht darin, dass nach dem Einführen der Stäbe und dem Stoppen der Kettenreaktion, der Kern noch weiter Wärme erzeugt. Das Uran "stoppt"  die Kettenreaktion. Aber eine Reihe von radioaktiven Zwischenprodukten, die durch das Uran während seines Spaltprozesses erzeugt wurden - vor allem Cäsium- und Jodisotope bzw. radioaktive Versionen dieser Elemente - teilen sich weiter in kleinere Atome und sind dann nicht mehr radioaktiv. Diese Elemente zerfallen weiterhin und produzieren dabei Wärme. Weil sie nicht mehr vom Uran gespeist werden (der Zerfall des Urans wurde nach dem Einfahren der Steuerstäbe gestoppt), werden sie immer weniger und so kühlt der Kern über einen Zeitraum von Tagen, bis radioaktiven Zwischenprodukte aufgebraucht sind.

Diese Nachzerfallswärme verursacht im Moment die Kopfschmerzen.

Also der erste "Typ" von radioaktivem Material ist das Uran in den Brennstäben sowie die radioaktiven Zwischenprodukte, in die Uran innerhalb des Brennstabs zerfällt (Cäsium und Jod).

Es wird eine zweiter Typ von radioaktivem Material außerhalb der Brennstäbe erzeugt. Der große Hauptunterschied vorneweg: Diese radioaktiven Stoffe haben eine sehr kurze Halbwertszeit, dass bedeutet sie zerfallen sehr schnell und teilen sich in nicht-radioaktive Stoffe. Mit schnell meine ich innerhalb von Sekunden. Also, wenn diese radioaktiven Stoffe in die Umwelt freigesetzt werden - ja es wurde Radioaktivität freigesetzt und nein, es ist überhaupt nicht gefährlich. Warum? Bis Du das Wort "R-A-D-I-O-N-U-K-L-I-D" buchstabiert hast, sind sie harmlos, weil sie sich in nicht radioaktive Elemente aufgespalten haben. Die radioaktiven Elemente sind N-16, das radioaktive Isotop (oder die Version) von Stickstoff ([der Hauptbestandteil von Anm.d.Ü.] Luft). Die anderen sind Edelgase wie Argon. Aber woher kommen sie? Wenn das Uran sich spaltet, erzeugt es ein Neutron (siehe oben). Die meisten dieser Neutronen treffen ein anderes Uranatom und halten die nukleare Kettenreaktion aufrecht. Einige jedoch verlassen den Brennstab und treffen auf Wassermoleküle oder die Luft, welche im Wasser gelöst ist. Dann kann ein nicht-radioaktives Element das Neutron "einfangen". Es wird radioaktiv. Wie oben beschrieben, wird es schnell (innerhalb von Sekunden) das Neutron los, um zu seiner ursprünglichen und schönen Version zurückzukehren.

Dieser zweite "Typ" der Strahlung ist sehr wichtig, wenn wir uns später über die in die Umwelt freigesetzte Radioaktivität unterhalten.

Was in Fukushima passiert ist

Ich werde versuchen, die wichtigsten Fakten zusammenzufassen. Das Erdbeben, das Japan getroffen hat  war 5 mal stärker als das schwerste Erdbeben für das ein Kernkraftwerk ausgelegt wurde (die Richterskala arbeitet logarithmisch, der Unterschied zwischen den 8,2 für die das Kraftwerk gebaut wurde und den 8,9 ist das 5-fache - nicht 0,7). Also erst einmal Hurra für die japanische Ingenieurskunst, dass alles gehalten hat.

Als das Erdbeben mit 8,9 zugeschlagen hat, hat sich der Kernreaktor automatisch abgeschaltet. Innerhalb von Sekunden nach dem Beginn des Erdbebens, sind die Steuerstäbe in den Kern eingefahren worden und nukleare Kettenreaktion des Urans wurde gestoppt. Nun muss das Kühlsystem die Nachzerfallswärme abführen. Die Leistung der Nachzerfallswärme beträgt etwa 3% der Leistung im normalen Betrieb.

Das Erdbeben zerstörte die externe Stromversorgung des Kernreaktors. Das ist einer der schwersten Unfälle für ein Atomkraftwerk und dementsprechend erhält ein "plant blackout" viel Aufmerksamkeit bei der Gestaltung der Backup-Systeme. Die Kühlwasserpumpen benötigen Strom, um zu arbeiten. Da das Kraftwerk abgeschaltet wurde, konnte es für sich selbst  keinen Stroms mehr erzeugen.

Für eine Stunde lief alles gut. Einige einer Reihe von Dieselgeneratoren zur Notstromversorgung sprangen an und stellten den benötigten Strom zur Verfügung. Dann kam der Tsunami - viel größer als er beim Bau des Kraftwerks erwartet wurde (siehe oben, Faktor 7). Der Tsunami zerstörte alle Notstromaggregate.

Beim Entwerfen eines Kernkraftwerks folgen Ingenieure der Philosophie von "gestaffelte Sicherheitsbarrieren". Das bedeutet, dass Du alles so auslegst, um der schlimmsten Katastrophe zu widerstehen, die Du Dir vorstellen kannst. Und dann legst Du das Kraftwerk so aus, dass es noch eine zweiten Systemausfall (von dem Du denkst dass er nicht passieren kann) nach dem ersten handhaben kann. Ein Tsunami, der alle Notstromaggregate zerstört, ist ein solches Szenario. Die letzte Verteidigungslinie setzt alles auf das dritte Containment (siehe oben), welches alles innerhalb des Reaktors halten wird, was auch immer für ein Chaos herrscht - Steuerstäbe drin oder draußen, Kern geschmolzen oder nicht.

Als die Dieselgeneratoren ausgefallen sind, wechselten die Reaktorbediener zu Notfallbatterien. Die Batterien sind ein Backup vom Backup, um Strom für die Kühlung des Kerns für 8 Stunden bereitzuhalten. Und das taten sie auch.

Innerhalb dieser 8 Stunden musste eine andere Stromquelle gefunden und an das Kraftwerk angeschlossen werden. Das Stromnetz selber funktionierte aufgrund des Erdbebens nicht. Die Dieselgeneratoren wurden durch den Tsunami zerstört. Deshalb wurden mobile Dieselgeneratoren per Lkw herbeigefahren.

An dieser Stelle fing die Sache an ernsthaft schief zu gehen. Die externe Generatoren konnte nicht an das Kraftwerk angeschlossen werden (die Stecker passten nicht). Also konnte die Nachzerfallswärme nicht mehr abgeführt werden, nachdem die Batterien leer waren.

An diesem Punkt folgen die Bediener vorhandenen Notfallmaßnahmen für einen "loss of cooling event" (Verlust der Kühlung Ereignis). Es ist ein weiterer Schritt der "gestaffelten Sicherheitsbarrieren". Die Stromversorgung für die Kühlsysteme sollte nie völlig versagt haben, aber es passierte dennoch also folgt der "Rückzug" auf die nächste Verteidigungslinie. All dies, wie schockierend es für uns auch sein mag, ist Teil der täglichen Schulung, die man als Bediener durchläuft bis hin zur Handhabung einer Kernschmelze.

Zu diesem Zeitpunkt fing man an, von einer Kernschmelze zu sprechen. Denn am Ende des Tages, wenn die Kühlung nicht wiederhergestellt werden kann, wird der Kern letztendlich schmelzen (nach Stunden oder Tagen), und die letzte Verteidigungslinie - der "Core Catcher" und das dritte Containment - würde ins Spiel kommen.

Aber das Ziel war zu diesem Zeitpunkt den Kern zu managen, während er sich aufheizt. Das soll sicherstellen, dass das erste Containment (die Zirkalloy Röhren, die den nuklearen Brennstoff enthalten) sowie das zweite Containment (unser Schnellkochtopf) so lange wie möglich intakt und funktionsfähig bleiben, um den Ingenieuren Zeit zu geben, die Kühlung zu reparieren.

Weil die Kühlung des Kerns eine so große Sache ist, hat der Reaktor eine Reihe von Kühlsystemen, die jeweils in mehreren Versionen vorhanden sind (das Reaktor Wasserreinigungssystem, die Nachzerfallswärmeabfuhr, die Kühlung der Reaktorkernisolierung die Standby-Flüssigkeitskühlung, und das Notfallkernkühlsystem [dies sind wahrscheinlich nicht die korrekten Bezeichnungen der Kühlsysteme Anm.d.Ü.]). Es ist an dieser Stelle unklar, welche wann und welche nicht ausgefallen sind.

Also stellen wir uns unseren Schnellkochtopf auf dem Herd vor, die Platte ist auf niedrig gestellt aber an. Die Bediener nutzen jede Kühlkapazität um so viel Wärme wie möglich loszuwerden, aber der Druck beginnt sich dennoch aufzubauen. Die Priorität besteht nun darin, die Integrität des ersten Containments (die Temperatur der Brennstäbe unter 2200 °C halten) und des zweites Containments (der Schnellkochtopf) aufrecht zu erhalten. Um die Integrität des Schnellkochtopfes (des zweite Containments) beizubehalten, muss der Druck von Zeit zu Zeit abgelassen werden. Weil das in einem Notfall so wichtig ist, hat der Reaktor 11 Druckablassventile. Die Bediener begannen jetzt von Zeit zu Zeit Dampf abzulassen, um den Druck zu kontrollieren. Die Temperatur betrug zu diesem Zeitpunkt etwa 550 °C

Zu diesem Zeitpunkt begannen die Berichte über "Freisetzung von Radioaktivität". Ich glaube, ich habe oben erläutert, warum das Ablassen des Dampfes theoretisch das gleiche ist wie die Freisetzung von Radioaktivität in die Umwelt, aber warum es nicht gefährlich war und nicht gefährlich ist. Der radioaktive Stickstoff sowie die Edelgase sind keine Bedrohung für die menschliche Gesundheit.

Irgendwann während dieses Vorgangs erfolgte die Explosion. Die Explosion ereignete sich außerhalb des dritten Containments (unserer "letzte Verteidigungslinie"). Erinnere Dich daran, dass das Reaktorgebäude keine Funktion hat, um die Radioaktivität einzugrenzen. Es ist noch nicht völlig geklärt, was passiert ist, aber dies ist ein wahrscheinliches Szenario: Die Bediener beschlossen, den Dampf aus dem Druckbehälter nicht direkt in die Umwelt, sondern in den Raum zwischen dem dritten Containment und dem Reaktorgebäude abzulassen (um die Radioaktivität in dem Dampf mehr Zeit zum Abklingen zu geben). Das Problem ist, dass bei den hohen Temperaturen, die der Kern in diesem Stadium erreicht hatte, Wassermoleküle sich in Sauerstoff und Wasserstoff "trennen" können - eine explosive Mischung. Und sie explodierte außerhalb des dritten Containments und zerstörte des Reaktorgebäude drumherum. Es war diese Art der Explosion, aber im Inneren des Druckbehälters (weil er schlecht konzipiert und nicht richtig von den Bedienern verwaltet wurde), die zur Explosion von Tschernobyl geführt hatte. Dies war nie ein Risiko in Fukushima. Das Problem der Wasserstoff-Sauerstoff-Bildung ist eines der Riesenprobleme beim Entwerfen eines Kraftwerks (wenn Du kein Sovjet bist, ist es eins), deshalb wird der Reaktor so gebaut und betrieben, dass es nicht innerhalb des Containments passieren kann. Es geschah außerhalb, was so nicht gedacht war, aber ein mögliches Szenario und ok ist, denn es war kein Risiko für das Containment.

Der Druck war also unter Kontrolle, als Dampf abgelassen wurde. Wenn Du nun Deinen Topf am kochen hältst, fällt und fällt der Wasserstand. Der Kern ist von mehreren Metern Wasser bedeckt werden, damit einige Zeit vergehen kann (Stunden, Tage) bis er frei liegt. Sobald die Stäbe an der Spitze anfangen freizuliegen, werden die freiliegenden Teile die kritischen Temperatur von 2200 °C innerhalb ca. 45 Minuten erreichen. Dann würde das erste Containment, die Zirkalloy Rohr, versagen.

Und genau das begann zu passiern. Die Kühlung konnte nicht wiederhergestellt werden, bevor es einigen (sehr begrenzten, aber dennoch) Schaden an der Hülle eines Teils der Brennstoffes gab. Das Kernmaterial selbst war noch intakt, aber die umliegenden Zirkalloy Hülle hatte begonnen zu schmelzen. Nun begannen einige der Nebenprodukte der Uranzerfalls - radioaktives Cäsium und Jod - sich mit dem Dampf zu mischen. Das große Problem, das Uran, war noch unter Kontrolle, da die Uranoxid Stäbe noch bis 3000 °C halten. Es ist bestätigt worden, dass eine sehr kleine Menge von Cäsium und Jod in dem Dampf gemessen und in die Atmosphäre freigesetzt wurde.

Es scheint, als dass dies das "Go-Signal" für einen großen Plan B war. Die geringen Mengen an Cäsium, die gemessen wurden, sagten den Bedienern, dass das erste Containment der Stangen irgendwo versagt hatte. Plan A war, eines der normalen Kühlsysteme des Kern wiederherzustellen. Warum das nicht klappte, ist unklar. Eine plausible Erklärung ist, dass der Tsunami auch das ganze saubere Wasser für die normale Kühlung weggenommen / verschmutzt hat.

Das Wasser welches im Kühlsystem verwendeten wird, ist sehr sauber und demineralisiert (wie destilliertes Wasser). Der Grund warum reines Wasser verwendet wird, ist die oben erwähnte Aktivierung durch die Neutronen aus dem Uran: Reines Wasser wird viel weniger aktiviert und bleibt praktisch radioaktiv-frei. Schmutz oder Salz im Wasser absorbiert die Neutronen schneller und wird mehr radioaktiv. Dies hat keinerlei Auswirkungen auf den Kern - er kümmert sich nicht darum, von was er gekühlt wird. Aber es macht das Leben schwierig für die Betreiber und Mechaniker, wenn sie es mit aktiviertem (d.h. leicht radioaktivem) Wasser zu tun haben.

Aber Plan A war gescheitert - die Kühlsysteme waren außer Funktion oder zusätzliche sauberes Wasser war nicht verfügbar - also trat Plan B in Kraft. Es sieht so aus, als ob folgendes passiert ist:

Um eine Kernschmelze zu verhindern, begannen die Bediener, Meerwasser zu verwenden, um den Kern zu kühlen. Ich bin nicht ganz sicher, ob sie unseren Schnellkochtopf geflutet haben (das zweite Containment), oder ob sie das dritte Containment geflutet und den Schnellkochtopf versenkt haben. Aber das ist für uns nicht relevant.

Der Punkt ist, dass der Kernbrennstoff nun abgekühlt wurde. Da die Kettenreaktion längst gestoppt worden war, wurde nun nur noch wenig Nachzerfallswärme erzeugt. Die große Menge des Kühlwassers, die verwendet wurde, ist ausreichend, um die Wärme aufzunehmen. Weil es viel Wasser ist, wird der Kern nicht mehr ausreichend Wärme produzieren, um einen nennenswertem Druck aufzubauen. Zusätzlich wurde dem Meerwasser Borsäure beigefügt. Borsäure ist ein "flüssiger Steuerstab". Was auch immer für ein Zerfall noch im Gange ist, Bor nimmt die Neutronen auf und beschleunigt eine weitere Abkühlung des Kerns.

Das Kraftwerk war nahe an einer Kernschmelze. Hier ist das Worst-Case-Szenario, das vermieden wurde: Wenn das Meerwasser nicht hätte verwendet werden können, hätten die Bediener weiterhin Dampf abgelassen, um einen Druckaufbau zu vermeiden. Das dritte Containment wäre dann vollständig verschlossen worden, damit die Kernschmelze ohne Freisetzung von radioaktiver Stoffe passieren kann. Nach der Kernschmelze gäbe es eine Wartefrist, damit alle radioaktiven Zwischenprodukten im Inneren des Reaktors zerfallen und alle radioaktiven Partikel sich auf einer Oberfläche innerhalb des Containments absetzen. Das Kühlsystem wäre schließlich wiederhergestellt und der geschmolzene Kern auf eine handhabbare Temperatur abgekühlt worden. Das Containment wäre von innen gereinigt worden. Dann wäre mit der schmutzigen Arbeit des Entfernens des geschmolzenen Kerns aus dem Containment begonnen worden. Der (nun wieder feste) Brennstoff würde in einzelnen Stücken in Transportbehältern verpackt und zur Weiterverarbeitung abtransportiert werden. Je nach Schaden, würde der Block der Anlage dann entweder repariert oder abgebaut werden.

Nun, wohin führt uns das? Meine Bewertung:

  • Die Anlage ist jetzt sicher und wird es auch bleiben.
  • Japan hat einen Unfall INES Level 4 erlebt: Nuklearer Unfall mit lokalen Auswirkungen. Das ist schlecht für das Unternehmen, dass die Anlage besitzt, aber nicht für jemand anderen.
  • Einige Strahlung ist freigesetzt worden, als der Dampf abgelassen wurde. Alle radioaktiven Isotope aus dem aktivierten Dampf sind verschwunden (zerfallenen). Eine sehr kleine Menge von Cäsium sowie Jod wurde freigesetzt. Wenn Du auf dem Schornstein der Anlage gesessen wärst, als sie den Dampf abgelassen haben, solltest Du besser mit dem Rauchen aufhören, um zu Deiner ursprünglichen Lebenserwartung zurückzukehren. Die Cäsium und Jod-Isotope wurden auf Meer geweht und sie waren nie wieder gesehen.
  • Es gab eine geringe Schäden am ersten Containment. Das bedeutet, dass einige Mengen an radioaktivem Cäsium und Jod in das Kühlwasser freigegeben werden, aber kein Uran oder anderen fiesen Sachen (das Uranoxid ist nicht "löslich" im Wasser). Es gibt Einrichtungen, um das Kühlwassers im dritte Containment zu behandeln. Das radioaktive Cäsium und Jod wird entfernt werden und schließlich als radioaktiver Abfall in Endlager gelagert.
  • Das Meerwasser, welches als Kühlwasser verwendet wurde, ist zu einem gewissen Grad aktiviert worden. Da die Steuerstäbe vollständig eingeführt sind, findet keine Urankettenreaktion statt. Das heißt, die "Haupt"-Kernreaktion ist nicht in Gange und trägt nicht zur Aktivierung bei. Die radioaktiven Zwischenprodukte (Cäsium und Jod) sind auch in diesem Stadium fast verschwunden, weil der Uran-Zerfall vor langer Zeit gestoppt wurde. Das reduziert die Aktivierung zusätzlich. Die Quintessenz ist, dass es ein niedriges Niveau der Aktivierung des Meerwassers gibt, die auch von Einrichtungen entfernt werden wird.
  • Das Meerwasser wird dann im Laufe der Zeit mit dem "normalen" Kühlwasser ersetzt werden
  • Der Reaktorkern wird dann abgebaut und zu einer Wiederaufbereitungsanlage transportiert, genau wie bei einem normalen Brennstoffwechsel.
  • Die Brennstäbe und die gesamte Anlage werden auf mögliche Schäden überprüft. Dieser Vorgang dauert ca. 4-5 Jahre.
  • Die Sicherheitssysteme auf alle japanischen Anlagen werden modernisiert, um einem 9,0 Erdbeben und Tsunami (oder schlimmer) standhalten zu können.
  • (Aktualisiert) Ich glaube, das größte Problem wird eine anhaltende Stromknappheit sein. 11 von Japans 55 Kernreaktoren in verschiedenen Kraftwerken sind abgeschaltet worden und müssen überprüft werden. Dies reduziert direkt die nationale nukleare Kraftwerkskapazität um 20%, wobei die Kernenergie rund 30% der nationalen Stromerzeugungskapazität ausmacht. Ich habe keine möglichen Konsequenzen für andere Kernkraftwerke betrachtet, die nicht direkt betroffen sind. Dies wird wahrscheinlich durch Gaskraftwerke abgedeckt, die normalerweise nur für Spitzenlasten und eine Anteil  der Grundlast abdecken. Ich bin nicht mit Japans Energie Supply Chain für Öl, Gas und Kohle vertraut und welche Schäden die Häfen, Raffinerien, Lagermöglichkeiten und Transportnetzwerke Davongetragen haben. Ebenso weiß ich nicht wie sehr das Stromnetz selber beschädigt ist. All das wird Deine Stromrechnung erhöhen, sowie zu Stromausfällen während Nachfragespitzen und den Wiederaufbaubemühungen in Japan führen.
  • Das alles ist nur ein Teil eines größeren Kontextes. Die Notfallteams müssen sich um Obdach, Trinkwasser, Nahrung und medizinische Versorgung, Transport-und Kommunikationsinfrastruktur sowie Stromversorgung kümmern. In einer Welt der Lean Supply Chains stehen wir einigen großen Herausforderungen in all diesen Bereichen gegenüber.

Wenn Du informiert bleiben willst, vergiss bitte die üblichen Medien und schau auf den folgenden Websites: